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LETTER TO THE EDITOR 

Phase diagram of the Z(5) model on a square lattice 

Eytan Domany?, David MukamelS and Adam Schwimmere 
t Department of Electronics, Weizmann Institute of Science, Rehovot, Israel 
$ Department of Physics, Weizmann Institute of Science, Rehovot, Israel 

Received 11 June 1980 

Abstract. A general five-state model, which contains the five-state Potts model and a 
solid-on-solid model as special cases, is studied. We find that the high-temperature 
paramagnetic and the low-temperature ordered phases are separated either by a line of 
first-order transitions or by an intermediate phase with algebraic decay of correlations. The 
phase diagram is proposed on the basis of general considerations and Monte-Carlo 
simulations. 

Models of interacting spins on two-dimensional lattices have been the object of 
numerous recent theoretical investigations (for a recent review see, e.g., Barber 1980). 
Some of these models are of special interest to statistical mechanicians because of their 
rich and complex phase structure and interesting critical behaviour. Many models have 
physical realisation (Domany and Riedell978, Tosatti 1978, Bak 1979). Some others 
are of interest to field theorists (e.g. Kogut 1979). 

In particular, the class of planar vector models has received considerable attention 
(Jose et a1 1977, Cardy 1978, Kadanoff 1978, Wu 1979, Nishimori 1979, Horn et a1 
1979, Elitzur et a1 1979, Einhorn et a1 1980, Guth et a1 1980). In these models one 
considers an angle Bi associated with each site of a two-dimensional lattice, with the 
Hamiltonian 

where V ( 0 )  is a periodic even function, 

v(e + = v(e) = v( - e) ,  
such that the energy of a pair of nearest-neighbour spins ( i j )  is lowest when Bi = ej: 

V(0) < v(e # 0) .  (3) 
When h N  = 0, the model possesses a continuous symmetry, and exhibits the behaviour 
predicted by Kosterlitz and Thouless (1973) and Kosterlitz (1974). In the limit hN +CO, 

the model reduces to one of discrete vectors, allowed to point to N discrete directions. 
Most theoretical studies concentrated on the case of the Villain (1975) form for the 

interaction V(6) ,  i.e. 

exp(- ~ ( 6 ) )  = 1 exp[ - - 2 ~ 1 ) ~ I .  (4) 
1 

In the limit hN +CO, one obtains the discrete N-state Villain model. 
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Jose et a1 (1977) studied the relevance of N-fold anisotropy fields hN near the 
Gaussian line of fixed points which governs the critical behaviour of the generalised 
isotropic Villian model they have introduced. They found that the relevance of such 
fields depends on the temperature (or K - ’ )  and on N, namely that the anisotropy field is 
relevant for temperatures T < Tl(N). For N < 4  the critical temperature TI  satisfies 
TI > TKT, where TKT is the temperature above which the Kosterlitz-Thouless phase 
becomes unstable. Therefore, they predict that the planar model, as defined by 
equations (1) and (4), with N 2 5, in the limit of small hN will have two transitions: from 
the paramagnetic to a Kosterlitz-Thouless (massless) phase, and at some lower 
temperature to a phase with conventional long-range order. Jose et a1 also considered 
the extremely anisotropic limit, that of the discrete N-state Villain model. In this limit 
they derived a duality relation, but no information concerning the phases and number of 
transitions. 

Elitzur et a1 (1979), using duality and comparing correlations of the discrete model 
with those of the isotropic (hN = 0) one by means of a Griffiths inequality, were able to 
show that for N>N, the discrete Villain model must also have two transitions. 
However, they did not give a rigorously derived value for N,. According to their 
estimate, the discrete five-state Villain model should have two transitions. More 
recently, Einhorn et a1 (1980) proposed a physical mechanism that explains the 
occurrence of two transitions in terms of a wall interpenetration and vortex liberation 
transitions respectively. An alternative, presumably equivalent description is obtained 
using ‘two Coulomb gases’ (Kadanoff 1978). Einhorn et a1 also predict that the 
five-state model has three phases. One of the aims of the present communication is to 
further substantiate this prediction. 

It should be noted that the considerations of Elitzur et a1 utilise the Villain form of 
the interaction. One problem of interest that has not been studied extensively is the 
effect of the form of V ( @ )  on the phases and the nature of the transition. This problem is 
of particular interest, since the most general discrete model contains the N-state Potts 
model which is known to have a single transition from a paramagnetic phase to a phase 
with conventional long-range order. Moreover, this transition is known to be of first 
order for N > 4  (Baxter 1973). Thus the general discrete five-state model can be 
viewed as the simplest possible testing ground for situations where application of a 
symmetry-breaking field destroys a first-order transition, and changes the phase 
structure and critical properties of the system. While such situations were studied in 
some detail for three-dimensional systems and models (Bak et a1 1976, Domany et a1 
1977, Kerszberg and Mukamel 1979, R Ditzian et a1 1980, unpublished), not much is 
known about the manner in which first-order transitions become continuous in two- 
dimensional models. 

To be explicit, we study the way the first-order transition of the five-state Potts 
model turns into two transitions with an intermediate Kosterlitz-Thouless phase as the 
interaction V ( 0 )  is changed from the Potts to the Villain form. A convenient 
parametrisation of the most general five-state model with V ( 0 )  of (2) and (3) can be 
defined as follows. Choose the normalisation V(0)  = 0, and define 

with 0 < xl, x 2  < 1. This general five-state model was studied by Nishimori (1979), who 
used the Migdal-Kadanoff approximate renormalisation group method (Migdal 1975, 
Kadanoff 1976), and by Wu (1979). We believe that the phase diagrams predicted by 
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both workers are incorrect. Our model reduces to the five-state Potts model on the line 

XI = x2 (6 )  
and to the discrete five-state Villain model on the trajectory (parametrised by 0 < K < 
CO) 

00 -1 

xi = i=-m 1 e x p [ - + ~ ( g r r j - 2 r l ) ~ ] ( ~  exp[ - t~ (2 r r l )~ ] )  . (7) 

Another line of special interest is the boundary of figure 1, i.e. 

x2 = 0. (8) 

/ 

x2 1 

Figure 1. Parameter space of a general five-state mode. x1 and x1 are defined in equation 
( 5 ) .  The line x1 = xz corresponds to the five-state Potts model. The self-dual line (equation 
10)) is also shown. On the lines x1 = 0 and xz = 0 the five-state model is equivalent to an SOS 

model. 

We shall show that on this line (and also on the line x1 = 0) the discrete five-state model 
is completely equivalent to a solid-on-solid ( S O S )  type model, defined in terms of a 
non-compact local integer variable- CO < ni <CO. This latter model, which was dis- 
cussed by Emery and Swendsen (1977) as a limiting case of a family of SOS models, is 
believed to be in the universality class of the XY model. 

Two symmetries of the model should be noted (Wu 1979). First, the partition 
function is invariant under interchanging x1 and x2; therefore the phase diagram is 
symmetric with respect to reflection about the Potts line. Second, a duality trans- 
formation (Wu and Wang 1976), given by 

21 = [ l + + ( ~ - l ) x l - 3 ( J J + l ) x z ] / ( 1 + 2 x 1 + 2 x 2 ) ,  
2,=[1-3(JJ+r)xl+1(JJ-l)xz]/(l+2x1+2x2), (9) 

leaves the partition function invariant (up to a simple multiplicative constant). This 
transformation has a line of self-dual points, given by 

1 + 2x1 + 2x2 = J5. (10) 
We now turn to the line x2 = 0. On this line, the relative angle between two nearest 

neighbours can take the values of 0 or *$r; the value *$r is not allowed. Each 
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configuration can be characterised by a set of integers {ni}; ni = 1 , 2 , .  . . , 5 ,  that define 
the angle at site i as = $mi. Alternatively, we can characterise each configuration by a 
set of arrows placed on the edges of the lattice according to the following convention. If 
i, j are two neighbouring sites, and = 61, no arrow is placed on the edge. If Bi = 6, +$T 

an arrow pointing from j to i is put there; an oppositely directed arrow appears when 
Bi = 6, -$T. A unique arrow configuration corresponds to each {ei} configuration, and 
there are five {ni} configurations that yield the same arrow configuration. The allowed 
arrow configurations of a basic square (plaquette) are shown in figure 2. The partition 
function of the five-state model on the x 2  = 0 line is given by 

Z ( x 1 ,  x 2  = 0 )  = 5 1 x y )  (11) 
C 

1 I 

Figure 2. Allowed arrow configurations of a basic square for Z ( N  3 5 )  models on the x2 = 0 
line. 

where C is a configuration of arrows such that every plaquette is allowed, i.e. appears in 
figure 2, and A ( C )  is the number of arrows in C. It is easy to see that for any discrete 
N-state planar model, with N s . 5  and interaction that allows only relative angle 
rt 2 r / N  with Boltzmann weight x (and 0 with weight l ) ,  the partition function has the 
same form as (1 l ) ,  and the allowed arrow configurations are the same as those of figure 
2. Furthermore, consider a solid-on-solid model, defined in terms of integers - 03 < 
ni < 00 and nearest-neighbour interactions of the form (Emery and Swendsen 1977) 

Klni - njy. (12) 

In the limit p +CO, only configurations with Ini -nil = 0, 1 are allowed. Note that this 
model is by no means equivalent to the one solved by Van Beijeren (1977) or those 
studied by W J Shugard et a1 (1980, unpublished). This SOS model, defined in terms of a 
non-compact variable, has the same form for the partition function as equation (11). It 
is also easy to show that the following equality between correlation functions holds: 

where on the left-hand side the average ( )N is evaluated for an N-state discrete model 
on the special line, and the right-hand side in the ensemble of the SOS model (12) in the 
p + CO limit. 
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The reasons for this equivalence between models with compact and non-compact 
variables is evident when one observes the allowed plaquette configurations of figure 2 .  
On the special line x2 = 0, the only allowed configurations are those in which no basic 
square can have finite vorticity. Therefore, on this line no allowed configurations will 
have a closed path along which the Bi variable undergoes a full 27r rotation. Thus the 
fact that 8; is a compact variable is never reflected in the energy of an allowed 
configuration. 

A more formal proof of the equivalence of the two models can be given as follows. 
Choose an arbitrary integer variable function f ( k ) ;  the expression 

+m N-1 

Z =  2 -1- f (A ,n+Nm,)  
mr=-w n = O  links 

represents the statistical sum of the most general nearest-neighbour Z(N) model. 
Any integer-valued link variable m, can be written as 

m, = A,P + €,,,a ’- l M  (15) a . A  

where P and M are integers and a is an arbitrary vector. The P variable can be used to 
extend the summation on n to infinity, i.e. 

Now if we choose for f ( k )  the function 

1 k = O  

f ( k ) = / ;  k = * l  

otherwise 

we get a zero contribution to Z unless 

1 
a . A  

- 1 6  A,n + Ne,,,a”-Ms + 1 .  (18) 

Applying the E ’ + A ~  operation to the previous equation on a square lattice we obtain 

- 4 G N M S  + 4  (19) 
and therefore if N 2 5 ,  M, being an integer, must be zero. Obviously, since M = 
E””A,m+, M plays the role of the vorticity. Therefore for the particular f ( k )  chosen 

oc 

i.e. the SOS model. 
The implications of this equivalence are quite important for the various discrete 

N-state planar models. The SOS model is dual to a continuous XY-type model, with the 
interaction 

v(e) = ln(1 + 2x COS e). (21 )  
Since in the SOS representation the model is well defined for any x < 1 we do not believe 
that any special problem arises for the values of x for which the argument of the log may 
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be negative. Therefore if the SOS model does have a transition it will be in the 
Kosterlitz-Thouless universality class, and the system will have a ‘massless’ phase, with 
algebraic decay of correlations. This phase will occur when XI > x2 is greater than some 
critical value, xc. Therefore for x1 > x, no correlation function of the SOS model can 
decay exponentially; in particular, the function (cos($rn (0) -3nn (R))jsos = r(R). This 
implies that for x1 > xc the five-state model will also have (on the x2 = 0 line) algebraic 
decay of correlations. The continuation of this segment of the x2 = 0 line into the x1-x2 
plane constitutes the intermediate Kosterlitz-Thouless phase predicted for N > 5 by 
Elitzur et al. 

Similar considerations, when applied for the Ashkin-Teller (or Z(4)) model on a 
triangular lattice, also indicate the existence of a massless phase. Again this phase is 
expected to be present near the xz=O line where x2 is the Boltzmann weight that 
corresponds to a relative angle of f n between two neighbouring spins. 

Savit (1980) studied Z ( N )  models on triangular lattices using another ‘decom- 
pactification’ method and reached the conclusion that for N 2 5 three phases exist. Of 
course this does not contradict our expectation that already for N = 4 two transitions 
occur. The critical value x, can be estimated by calculating the interface free energy, U, 
associated with two domains magnetised along different directions, say 191 = 0 and 
612 = $r. This free energy should vanish at the transition. Following Muller-Hartman 
and Zittartz (1977) we estimate U by considering only wall configurations that do not 
have bubbles and overhangs. While this method yields the exact free energy for the 
Ising model, it may only be used for estimating U associated with the model considered 
in this work. We find 

(22) K =  -1 2 In x17 U = 2K +In tanh K, 

which is the result found for the Ising model. Setting U = 0 an estimate for the critical 
value x ,  is obtained: 

- 
xc = J 2  - 1. (23) 

The point (xo 0) does not lie on the self-dual line and therefore one expects to find a 
phase transition at the point which is dual to (xc, 0). This result is in agreement with the 
phase diagram (figure 3) where one finds two lines of critical points. An upper bound 
for xc can be estimated noting that the SOS model, having less freedom for its variable 
than the discrete Gaussian model, is probably more ordered. Therefore we expect the 
transition to a massless phase to occur at a lower temperature than in a Gaussian model. 
The physical interpretation of this transition in the language of Einhorn et al is simply a 
wall interpenetration. Since the vortices do not exist in this model they cannot interfere 
with the wall transition. 

Consider now the vicinity of the Potts line, x1 = x2. At x* = (hi- I)-’ the Potts 
model has a first-order transition, with a finite latent heat. When the Potts symmetry is 
slightly broken, the latent heat may decrease; however, it does not seem likely to vanish 
for an arbitrarily small deviation from the Potts line. Thus, contrary to the prediction of 
Wu (1979)’ we believe that the first-order nature of the transition persists for finite 
deviations from the Potts line. 

These considerations imply the qualitative phase diagram of figure 3. We have 
indicated three possible ways in which the three transition lines (two limit the inter- 
mediate Kosterlitz-Thouless phase, and the third is the extension of the first-order 
Potts transition) can meet. Of the three possibilities, that of figure 3 ( a )  seems to be the 
most plausible. The phase diagram of figure 3(6) implies the existence of a first-order 
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Figure 3. ( a )  Phase diagram of the Z(5) model. There are three phases: disordered (para), 
massless (KT) and a phase with conventional long-range order (LRO). The transition from 
para to LRO is either first order or via an intermediate KT phase. ( b )  and (c) are other 
possible ways in which the line of first-order transitions connects to the KT phase boundary. 
See text for discussion. 

transition terminating at a critical point within the Kosterlitz-Thouless phase. Such a 
transition could correspond to a discontinuity of the amplitude of the local vector field. 
Gibbs phase-rule-type arguments show that the phase diagram ( c )  is not likely to be 
realised. The Landau Hamiltonian associated with the para-LRo transition has the 
form 

H = u2s2 + u4s4 + u5s5  COS 58 + o(s6) (24) 
where (S, e )  defines the two-component order parameter of this transition. At the 
tricritical point T one has to satisfy three equations u2 = u4 = us = 0. However, since 
the coefficients ui are functions of only two variables, x1 and x 2 ,  the three equations are 
not likely to be satisfied. In other words the codimension (Griffiths 1975) of the 
tricritical point T is 3, and therefore it is not expected to appear in a two-dimensional 
parameter space. 

In order to substantiate the arguments presented above, we have performed 
numerical Monte-Carlo simulations of relatively small systems. In order to trace a 
trajectory in the xl-xz plane, we choose a point a, b and define a temperature trajectory 
by 

(25) 

First we divided the self-dual line between the Potts transition point x *  and the 
boundary x 2  = 0 into segments, bounded by the points 

1/T x 2 = b  . 11 T x1=a , 

[ai, bi] = [ x *  + &(i - l)x*, X *  - &(i - l ) x * ] ,  (26) 
and performed temperature sweeps near each of these points. The specific heat per 
spin, obtained by calculating the average energy fluctuation, is plotted in figure 4. Since 
in the thermodynamic limit the five-state Potts model has a first-order transition, a 
8-function singularity in the specific heat is approached as the size of the system 
increases. Comparison of the specific heat per spin measured on the self-dual line for 
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Figure 4. Specific heat per spin for temperature trajectories (equation (25)) across the 
self-dual line. The various curves correspond to the models defined by equations (25) and 
(26) for i = 0, . . . , 5 .  The full curves correspond to a system of 10 x 10 spins, the open 
circles to 20 x 20. 

systems of increasing size (up to 20 x 20) indicates that the magnitude does not saturate 
with size for the first three or four systems on figure 4. Thus we predict that the 
transition remains of first order along the segment of the self-dual line that extends from 
the Potts transition point to about (xl, x 2 )  = (0.4,0-2). Beyond this point, the specific 
heat saturates with size on the self-dual line, which means a non-divergent specific heat 
in the thermodynamic limit. In this regime the specific heat clearly exhibits two peaks at 
temperatures that correspond to points on the low/high-temperature side of the 
self-dual line. A temperature sweep that corresponds to the trajectory with 

a = 0.5335, b = 0.0845 (27) 

is shown in figure 5. The point (27) is the self-dual point of the five-state discrete Villain 
model. The magnitude of these peaks is markedly smaller than those of the model near 
the Potts lines and a fast saturation with size is observed. The specific heat of the XY 
model was predicted to exhibit a finite rounded peak at some temperature Tp above the 
Kosterlitz-Thouless transition temperature. Numerical situations (Tobochnick and 
Chester 1979) indicate a sharp peak, about 15% above TKT. 

In order to verify that in the intermediate phase the correlation length is infinite, we 
calculated the susceptibility per spin, defined as 

x is expected to diverge when 6, the correlation length, diverges. Again, for finite 
systems this divergence is reflected in increasing values of x as the size of the system 
increases. -Indeed, we found that x increases with size for a range of temperatures for 
various trajectories defined by equation (25). Since our susceptibility results were more 
stable (with smaller statistical error) on the high-temperature side, we used the lack of 
saturation of x on the high-temperature side to estimate the appropriate boundary of 
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Figure 5. Specific heat per spin for a model defined by equations (25) and (27). The scale in 
this figure is different from that used in figure 4. 

the intermediate Kosterlitz-Thouless phase, and determined the low-temperature 
boundary using duality (equation (9)). 

The resulting phase diagram for the five-state model is shown in figure 3(a ) .  We 
have also studied the size dependence of ,y at some points inside the KT phase, and 
indeed found no indication of saturation with size, in accordance with the picture of 
algebraic decay of correlations in the entire intermediate phase. 

In summary, we presented arguments concerning the nature of the phase diagram of 
a general planar five-state model. We argued that such a model will have either a single, 
first-order transition, or two transitions with an intermediate KT phase. Monte-Carlo 
simulation substantiated this picture, and yielded a qualitative estimate of the phase 
diagram. It is hoped that studies based on other methods, such as position-space 
renormalisation group (Mizrachi and Domany, unpublished) and series expansions, will 
further strengthen the qualitative aspects of the phase diagram, as well as sharpen the 
quantitative aspects of our numerical study. 

We thank S Elitzur and E Rabinovici for illuminating discussions. This work was 
supported in part by a grant from the Israel-United States Binational Science Foun- 
dation (BSF), Jerusalem. 

Note added. Recently, Cardy (1980) considered the phase diagram of discrete planar 
models in two dimensions. His phase diagram for Z ( S )  is similar to the one presented in 
this Letter. 
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